Abstract
The co-expression of the CREB and ATF1 transcription factors is required for the development of preimplantation embryos. Embryotropin-mediated, calcium/calmodulin-dependent signalling activates CREB-induced transcription in the two-cell embryo, but the regulation of ATF1 in the embryo is not known. This study demonstrates that ATF1 begins to accumulate within both pronuclei of the mouse zygote by 20 h post-human chorionic gonadotrophin. This did not require new transcription (not blocked by α-amanitin), but was dependent upon protein synthesis (blocked by puromycin) and the activity of P38 MAP kinase. ATF1 becomes an active transcription factor upon being phosphorylated. A marked accumulation of phosphorylated ATF1 was evident in two-cell embryos and this persisted in subsequent stages of development. This phosphorylation was enhanced by the actions of autocrine embryotropic mediators (including Paf) and required the mutual actions of P38 MAP kinase and calmodulin-dependent pathways for maximum levels of phosphorylation. The combined inhibition of these two pathways blocked embryonic genome activation (EGA) and caused embryos to enter a developmental block at the two-cell stage. The members of the CREB family of transcription factors can generate one of the most diverse transcriptomes of any transcription factor. The demonstration of the presence of activated CREB and ATF1 within the embryonic nucleus at the time of EGA places these transcription factors as priority targets as key regulators of EGA.
Subject
Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献