Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation

Author:

Roth Z,Hansen P J

Abstract

Meiotic maturation in mammalian oocytes is a complex process which involves extensive rearrangement of microtubules, actin filaments and chromosomes. Since cytoskeletal elements are sensitive to disruption by heat shock, a series of experiments were performed to determine whether physiologically relevant heat shock disrupts the progression of the oocyte through meiosis, fertilization and zygote formation. Cumulus–oocyte complexes were cultured at 38.5, 40.0 or 41.0 °C for the first 12 h of maturation. Incubation during the last 10 h of maturation and 18 h after fertilization was at 38.5 °C and in 5% (v/v) CO2for both treatments. Examination of the cytoskeleton and the chromosome organization in matured oocytes revealed that oocytes matured at 38.5°C were mostly at metaphase II (MII) stage, while the majority of heat-shocked oocytes were blocked at the first metaphase (MI), first anaphase or first telophase stages. A subset of heat-shocked oocytes possessed misshapen MI spindles with disorganized microtubules and unaligned chromosomes. A higher percentage of TUNEL-positive oocytes was noted for oocytes matured at 41.0 °C. Addition of 50 nmol/l sphingosine 1-phosphate to maturation medium blocked the effect of heat shock on progression through meiosis and apoptosis and increased the proportion of oocytes matured at 41.0 °C that were at MII. Following insemination, a high percentage of heat-shocked oocytes were unfertilized, while the majority of the control zygotes were fertilized and had two visible pronuclei. In conclusion, heat shock disrupts nuclear maturation and induces apoptosis. These alterations are likely to be involved in the mechanism underlying heat-shock-induced disruption of oocyte capacity for fertilization and subsequent development.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3