Maintenance of meiotic arrest in bovine oocytes using the S-enantiomer of roscovitine: effects on maturation, fertilization and subsequent embryo development in vitro

Author:

Coy Pilar,Romar Raquel,Payton Rebecca R,McCann Lisa,Saxton Arnold M,Edwards J Lannett

Abstract

The overall objective was to evaluate the effectiveness of the S-enantiomer of roscovitine (inhibitor of p34cdc2/cyclin B kinase) to maintain bovine cumulus–oocyte complexes at the germinal vesicle (GV) stage for extended times after removal from antral follicles without compromising subsequent maturation, fertilization and embryo development. Oocytes were cultured in 0, 12.5, 25 or 50 μmol/l S-roscovitine for 24 h. Hoechst staining showed that 50 μmol/l S-roscovitine maintained >90% of oocytes at the GV stage and inhibited gonadotropin-induced cumulus expansion. Fewer oocytes underwent nuclear maturation after in vitro maturation (Hoechst staining) when cultured in 50 μmol/l S-roscovitine for 66 versus 21 or 42 h. Zona pellucida (ZP) hardening (pronase resistance), cortical granule types (lens culinaris agglutinin–fluorescein isothiocyanate), nuclear maturation and fertilization with frozen-thawed spermatozoa (Hoechst staining) were assessed after culture of oocytes in 50 μmol/l S-roscovitine for 0, 24 or 48 h. Neither ZP hardening, nor nuclear maturation nor fertilization were altered by roscovitine culture for 48 h. A higher proportion of oocytes had a type III cortical granule pattern (premature translocation to the oolemma) after roscovitine culture for 48 h. However, embryo development was not compromised as cleavage, development to 8–16 cell and blastocyst stages were at least comparable in control and roscovitine-treated oocytes. In conclusion, the studies have shown that S-roscovitine reversibly maintained bovine oocytes at the GV stage for 48 h. However, maintenance of oocytes in static culture for 48 h was not sufficient to improve development above non-treated controls.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3