Pre-ovulatory intercellular regulation of miR-125a-3p within mouse ovarian follicles

Author:

Grossman Hadas1,Har-Paz Efrat1,Gindi Natalie1,Miller Irit1,Shalgi Ruth1

Affiliation:

1. 1Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel

Abstract

miR-125a-3p, a post-transcription regulator of Fyn kinase, is expressed in mouse pre-ovulatory follicles; its expression within the follicle decreases toward ovulation. Our aim was to follow the synthesis of miR-125a-3p and regulation of its expression in all follicular compartments, focusing on intercellular communication. Mural granulosa cells (GCs) or cumulus cells (CCs) were transfected with either scrambled-miR (negative control) or miR-125a-3p mimic. Freshly isolated GCs or CCs were incubated overnight in culture media conditioned by transfected cells. To examine a possible role of gap junctions in the regulation of miR-125a-3p, we incubated large antral follicles in the presence of carbenoxolone, a gap-junction inhibitor, and triggered them to mature with hGC. Levels of miR-125a family members in GCs, CCs, oocytes, and culture media were measured by qPCR. We showed that miR-125a-3p is synthesized by all follicular components, but is regulated within the follicle as a whole. It is secreted by mural-GCs and taken up by CCs, where it remains functional, and vice versa, mural-GCs can take up miR-125a-3p secreted by CCs. miR-125a-3p is transcribed and accumulated in oocytes throughout oogenesis. Transcriptionally quiescent GV oocytes utilize their accompanying follicular cells to monitor the level of miR-125a-3p within them, as indicated in an ex vivo follicle culture. Our study reveals that miR-125a-3p expression is modulated by a network of intercellular communications within pre-ovulatory follicles, thus enabling a coordinated decrease of miR-125a-3p toward ovulation.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3