Dynamics of extracellular vesicle-coupled microRNAs in equine follicular fluid associated with follicle selection and ovulation

Author:

Gebremedhn Samuel12,Gad Ahmed13,Ishak Ghassan M45,Menjivar Nico G1,Gastal Melba O5,Feugang Jean M6,Prochazka Radek7,Tesfaye Dawit1ORCID,Gastal Eduardo L5ORCID

Affiliation:

1. Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, CO, USA

2. Division of IVF Research, Genus Plc , DeForest, WI, USA

3. Department of Animal Production, Faculty of Agriculture, Cairo University , Giza, Egypt

4. Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad , Baghdad, Iraq

5. Department of Animal Science, School of Agricultural Sciences, Southern Illinois University , Carbondale, IL, USA

6. Department of Animal and Dairy Sciences, Mississippi State University , Mississippi State, MS, USA

7. Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences , Liběchov, Czech Republic

Abstract

Abstract Innumerable similarities in reproductive cyclicity and hormonal alterations highlight the considerable utility of the mare to study aspects of follicular dynamics and reproductive function in view of the largely constricted, human research subjects. The bi-directional communication between the growing oocyte and the surrounding somatic cells embodies the hallmark of mammalian follicular development, partially mediated by extracellular vesicles (EVs) encapsulated with microRNAs (miRNAs) and present in the follicular fluid (FF). Here, we aimed to decipher the dynamics of the miRNAs in EVs from equine FF aspirated in vivo during different stages of follicular development, namely, predeviation (PreDev; 18–20 mm), deviation (Dev; 22–25 mm), postdeviation (PostDev; 26–29 mm), preovulatory (PreOV; 30–35 mm), and impending ovulation (IMP; ∼40 mm). Approximately 176 known miRNAs were found in all groups with 144 mutually detected among all groups. Cluster analysis exhibited 15 different expression patterns during follicular development. Among these patterns, a group of 22 miRNAs (including miR-146b-5p, miR-140, and miR-143) exhibited a sharp reduction in expression from the PreDev until the PreOV stage. Another cluster of 23 miRNAs (including miR-106b, miR-199a-5p, and miR-125a-5p) exhibited a stable expression pattern at the PreDev stage until the PostDev stage, with a significant increase at the PreOV stage followed by a significant decrease at the IMP stage. In conclusion, this study provides greater insights into the stage-specific expression dynamics of FF EV-miRNAs during equine follicular development, which may propose novel approaches to improve ART and provide new biomarkers to facilitate the assessment of ovarian pathophysiological conditions.

Funder

Ministry of Higher Education & Scientific Research, Baghdad

NIH

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3