CARM1 is heterogeneous in mouse four-cell embryo and important to blastocyst development

Author:

Sun Hongzheng1,Su Jianmin1,Wu Teng1,Wang Fengyu1,Kang Jian1,Zhang Jingcheng1,Xing Xupeng1,Cheng Yuyao1,Zhang Yong1

Affiliation:

1. 1Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, China

Abstract

Coactivator-associated arginine methyltransferase 1 (CARM1) is a type I arginine methyltransferase that methylates the arginine residues of histone and nonhistone. Carm1 regulates various cellular processes, including transcriptional regulation, mRNA processing, cellular proliferation, and differentiation. Blastomeres with high Carm1 expression levels show cleavage tendency to inner cell mass (ICM) in mouse embryos. However, details about the factors for CARM1 distribution in mouse early embryos and the role of Carm1 in blastocyst development remain unclear. Here, the endonuclear distribution of CARM1 protein was heterogeneous between blastomeres from the late four-cell stage to the blastocyst stage. The heterogeneity of CARM1 distribution in blastomeres at the late four-cell stage was randomly obtained from two-cell stage embryos. From the four-cell stage to morula, CARM1 in individual blastomere remained heterogeneous. In the blastocyst stage, CARM1 protein level in ICM was much higher than that in trophoblast. We found that microRNA (miRNA) miR-181a is an important regulator for Carm1 distribution at the late four-cell stage. The ratio of heterogeneous embryos was reduced in all the embryos when miR-181a was inhibited. CARM1 inhibition reduced the level of symmetrical histone H3 arginine-26 dimethylation and impaired blastocyst development. Silencing Carm1 reduced cell number and increased cell apoptosis at the blastocyst stage. These results show a CARM1 heterogeneous distribution from the four-cell embryos to the blastocysts. miR-181a regulates the control of CARM1 heterogeneous distribution in the four-cell-stage embryos, and CARM1 is an important protein in regulating blastocyst development.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3