PDK2-enhanced glycolysis promotes fibroblast proliferation in thyroid-associated ophthalmopathy

Author:

Ma Ruiqi12,Gan Lu12,Ren Hui1,Harrison Andrew3,Qian Jiang1

Affiliation:

1. 1Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China

2. 2Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China

3. 3Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA

Abstract

The study aimed to investigate the role of pyruvate dehydrogenase kinase (PDK) in regulating glycolysis and proliferation of perimysial orbital fibroblasts (pOFs) during the pathogenesis of thyroid-associated ophthalmopathy (TAO). EdU and BrdU incorporation assays were performed to examine cell proliferation. Lactate production and oxygen consumption assays were conducted to evaluate glycolysis. Real-time PCR was adapted to quantify PDK mRNA levels. Capillary Western immunoassay was adapted to quantify PDK2, Akt, pAkt308 and GAPDH in protein samples. The TAO pOFs exhibited stronger proliferation activity, higher intracellular lactate concentration, and lower oxygen consumption rate than the control pOFs. The PDK inhibitor dichloroacetic acid (DCA) dose-dependently suppressed the proliferation of both TAO and control pOFs. DCA reduced lactate production and promoted oxygen consumption in the TAO pOFs but showed no significant effects on glycolysis in the control pOFs. Among four PDK isotypes, PDK2 was overexpressed in the TAO pOFs. The potential PDK signaling mediator, cytoplasmic Akt, was more abundant in TAO pOFs than control pOFs. Knockdown of PDK2 resulted in lower lactate production, stronger oxygen consumption, weaker proliferation activity, and less cytoplasmic Akt in the TAO pOFs but showed no significant effects in the control pOFs. The Akt inhibitor MK2206 suppressed proliferation in both TAO and control pOFs, and lactate production was inhibited by MK2206 in the TAO OFs but not the control pOFs. To conclude, PDK2 overexpression enhances glycolysis and promotes proliferation via Akt signaling in the TAO pOFs. These findings yield insights that PDK2 is a potential therapeutic target for TAO treatment.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3