In vivo gene expression in granulosa cells during pig terminal follicular development

Author:

Bonnet A,Lê Cao K A,SanCristobal M,Benne F,Robert-Granié C,Law-So G,Fabre S,Besse P,De Billy E,Quesnel H,Hatey F,Tosser-Klopp G

Abstract

AbstractOvarian antral follicular development is clearly dependent on pituitary gonadotrophins FSH and LH. Although the endocrine mechanism that controls ovarian folliculogenesis leading to ovulation is quite well understood, the detailed mechanisms and molecular determinants in the different follicular compartments remain to be clarified. The aim of this study was to identify the genes differentially expressed in pig granulosa cells along the terminal ovarian follicle growth, to gain a comprehensive view of these molecular mechanisms. First, we developed a specific micro-array using cDNAs from suppression subtractive hybridization libraries (345 contigs) obtained by comparison of three follicle size classes: small, medium and large antral healthy follicles. In a second step, a transcriptomic analysis using cDNA probes from these three follicle classes identified 79 differentially expressed transcripts along the terminal follicular growth and 26 predictive genes of size classes. The differential expression of 18 genes has been controlled using real-time PCR experiments validating the micro-array analysis. Finally, the integration of the data using Ingenuity Pathways Analysis identified five gene networks providing descriptive elements of the terminal follicular development. Specifically, we observed: (1) the down-expression of ribosomal protein genes, (2) the genes involved in lipid metabolism and (3) the down-expression of cell morphology and ion-binding genes. In conclusion, this study gives new insight into the gene expression during pig terminal follicular growthin vivoand suggested, in particular, a morphological change in pig granulosa cells accompanying terminal follicular growth.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3