MALDI mass spectrometry imaging shows a gradual change in the proteome landscape during mouse ovarian folliculogenesis

Author:

Fiorentino Giulia1,Smith Andrew2,Nicora Giovanna3,Bellazzi Riccardo3ORCID,Magni Fulvio2ORCID,Garagna Silvia1ORCID,Zuccotti Maurizio1ORCID

Affiliation:

1. Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia , Pavia, Italy

2. Department of Medicine and Surgery, University of Milano-Bicocca , Vedano al Lambro, Italy

3. Department of Electrical, Computer and Biomedical Engineering, University of Pavia , Pavia, Italy

Abstract

AbstractOur knowledge regarding the role proteins play in the mutual relationship among oocytes, surrounding follicle cells, stroma, and the vascular network inside the ovary is still poor and obtaining insights into this context would significantly aid our understanding of folliculogenesis. Here, we describe a spatial proteomics approach to characterize the proteome of individual follicles at different growth stages in a whole prepubertal 25-day-old mouse ovary. A total of 401 proteins were identified by nano-scale liquid chromatography–electrospray ionization–tandem mass spectrometry (nLC-ESI-MS/MS), 69 with a known function in ovary biology, as demonstrated by earlier proteomics studies. Enrichment analysis highlighted significant KEGG and Reactome pathways, with apoptosis, developmental biology, PI3K-Akt, epigenetic regulation of gene expression, and extracellular matrix organization being well represented. Then, correlating these data with the spatial information provided by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) on 276 follicles enabled the protein profiles of single follicle types to be mapped within their native context, highlighting 94 proteins that were detected throughout the secondary to the pre-ovulatory transition. Statistical analyses identified a group of 37 proteins that showed a gradual quantitative change during follicle differentiation, comprising 10 with a known role in follicle growth (NUMA1, TPM2), oocyte germinal vesicle-to-metaphase II transition (SFPQ, ACTBL, MARCS, NUCL), ovulation (GELS, CO1A2), and preimplantation development (TIF1B, KHDC3). The proteome landscape identified includes molecules of known function in the ovary, but also those whose specific role is emerging. Altogether, this work demonstrates the utility of performing spatial proteomics in the context of the ovary and offers sound bases for more in-depth investigations that aim to further unravel its spatial proteome.

Funder

Italian Ministry of University and Research

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Obstetrics and Gynecology,Genetics,Molecular Biology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3