Urocortin increased endothelial ICAM1 by cPLA2-dependent NF-κB and PKA pathways in HUVECs

Author:

Wan Rong,Liu Yunxin,Li Li,Zhu Chao,Jin Lai,Li Shengnan

Abstract

Urocortin (Ucn1), a member of the corticotrophin-releasing hormone (CRH) family, has been reported to participate in inflammation. The increased expression of intercellular adhesion molecule 1 (ICAM1) plays important roles in inflammation and immune responses. Our previous results demonstrated that Ucn1 significantly enhanced the expression of ICAM1. However, the underlying mechanisms are still unknown. The purpose of this study is to investigate the detailed mechanisms of Ucn1-induced upregulation of ICAM1. Here, we characterized the mechanisms of Ucn1 usage to regulate ICAM1 expression in human umbilical vein endothelial cells (HUVECs). Our data revealed that Ucn1 increased ICAM1 and cyclooxygenase 2 (COX2) expressions in a time-dependent manner via CRH receptor 2 (CRHR2). In addition, COX2 was involved in ICAM1 upregulation. Furthermore, Ucn1 could increase the expression and phosphorylation of cytosolic phospholipases A2 (cPLA2) in a time-dependent manner via CRHR2 and CRHR1. Moreover, ablation of cPLA2 by the inhibitor pyrrophenone or siRNA attenuated the ICAM1 increase induced by Ucn1. In addition, nuclear factor κB (NF-κB) was activated, indicated by the increase in nuclear p65NF-κB expression and phosphorylation of p65NF-κB, depending on cPLA2 and CRHR2 activation. Pyrrolidinedithiocarbamic acid, an inhibitor of NF-κB, abolished the elevation of ICAM1 but not COX2. Also, Ucn1 increased the production of prostaglandin E2 (PGE2) which further activated protein kinase A (PKA)–CREB pathways dependent of cPLA2 via CRHR2. Moreover, the increase in NF-κB phosphorylation was not affected by the selective COX2 inhibitor NS-398 or the PKA inhibitor H89. In conclusion, these data indicate that Ucn1 increase the ICAM1 expression via cPLA2-NF-κB and cPLA2-COX2-PGE2-PKA-CREB pathways by means of CRHR2.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3