Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies

Author:

Denomme Michelle M,Mann Mellissa R W

Abstract

Gamete and early embryo development are important stages when genome-scale epigenetic transitions are orchestrated. The apparent lack of remodeling of differential imprinted DNA methylation during preimplantation development has lead to the argument that epigenetic disruption by assisted reproductive technologies (ARTs) is restricted to imprinted genes. We contend that aberrant imprinted methylation arising from assisted reproduction or infertility may be an indicator of more global epigenetic instability. Here, we review the current literature on the effects of ARTs, including ovarian stimulation,in vitrooocyte maturation, oocyte cryopreservation, IVF, ICSI, embryo culture, and infertility on genomic imprinting as a model for evaluating epigenetic stability. Undoubtedly, the relationship between impaired fertility, ARTs, and epigenetic stability is unquestionably complex. What is clear is that future studies need to be directed at determining the molecular and cellular mechanisms giving rise to epigenetic errors.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3