Advantages of vitrification preservation in assisted reproduction and potential influences on imprinted genes

Author:

Chen Huanhuan,Zhang Lei,Meng Li,Liang Linlin,Zhang Cuilian

Abstract

AbstractCryopreservation has important application in assisted reproductive technology (ART). The vitrification technique has been widely used in the cryopreservation of oocytes and embryos, as a large number of clinical results and experimental studies have shown that vitrification can achieve a higher cell survival rate and preimplantation development rate and better pregnancy outcomes. Ovarian tissue vitrification is an alternative method to slow freezing that causes comparatively less damage to the original follicular DNA. At present, sperm preservation mainly adopts slow freezing or rapid freezing (LN2 vapor method), although the vitrification method can achieve higher sperm motility after warming. However, due to the use of high-concentration cryoprotectants and ultra-rapid cooling, vitrification may cause strong stress to gametes, embryos and tissue cells, resulting in potentially adverse effects. Imprinted genes are regulated by epigenetic modifications, including DNA methylation, and show single allele expression. Their accurate regulation and correct expression are very important for the placenta, fetal development and offspring health. Considering that genome imprinting is very sensitive to changes in the external environment, we comprehensively summarized the effect of cryopreservation—especially the vitrification method in ART—on imprinted genes. Animal studies have found that the vitrification of oocytes and embryos can have a significant impact on some imprinted genes and DNA methylation, but the few studies in humans have reported almost no influence, which need to be further explored. This review provides useful information for the safety assessment and further optimization of the current cryopreservation techniques in ART.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Henan Medical Science and Technology Research Project

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3