Effects of insulin-like growth factor I on growth, epithelial barrier and iodide transport in polarized pig thyrocyte monolayers

Author:

Ericson Lars E,Nilsson Mikael

Abstract

Ericson LE, Nilsson M. Effects of insulin-like growth factor I on growth, epithelial barrier and iodide transport in polarized pig thyrocyte monolayers. Eur J Endocrinol 1996;135:118–27. ISSN 0804–4643 The effects of insulin-like growth factor I (IGF-I) on mitogenesis, epithelial barrier function and transepithelial iodide transport were studied in confluent, polarized monolayers of pig thyrocytes cultured on filter in Transwell bicameral chambers. The growth rate in controls cultured in 1% fetal calf serum was low. Insulin-like growth factor I stimulated dose-dependently the incorporation of [3H]thymidine, maximally at 100 ng/ml, which corresponded to an increase of DNA content by 60% after 6 days. Thyrotropin (1 mU/ml) alone did not stimulate cell multiplication but inhibited partially the stimulatory effect of IGF-I. Insulin-like growth factor I(100 ng/ml) increased within 10 min the transepithelial potential difference, which remained elevated for several days, but did not significantly change the transepithelial resistance. When added together, IGF-I reinforced the effects of TSH on potential difference (increase) and resistance (decrease). A preserved epithelial barrier in IGF-I-treated cultures was confirmed by observing a normal immunolocalization of the tight junction protein ZO-1 and an unchanged ultrastructure of the junctional complex. Insulin-like growth factor I increased the transepithelial flux of 125I in the basal-to-apical, but not in the opposite, direction. Stimulation of iodide transport by IGF-I was modest after 2 days and pronounced after 6 days. In comparison, TSH-stimulated iodide transport was higher after 2 days but lower after 6 days. Both TSH and IGF-I were strongly synergistic, after 6 days amounting to a 90-fold increase over the control basoapical 125I transfer. The simultaneous accumulation of 125I in the cell layer was increased two- to fourfold by IGF-I and/or TSH. In conclusion, IGF-I is able to induce growth in preformed monolayers of pig thyrocytes cultured on permeable filter. During these conditions, the mitogenic effect of IGF-I is partially inhibited by TSH, which has no growth-promoting action on its own. The transepithelial transport of iodide and bulk electrolytes is altered by IGF-I without affecting the epithelial barrier function. Specifically, IGF-I up-regulates the activity of the basolateral iodide pump and increases the iodide permeability of the apical plasma membrane. The action of IGF-I on iodide transport is independent of, although synergistic with, that of TSH. The findings support the notion that IGF-I may be an important regulator of thyroid growth and differentiated functions. Lars E Ericson, Institute of Anatomy and Cell Biology, Göteborg University, Medicinaregatan 3, S-413 90 Göteborg, Sweden

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3