Development of an In Vitro Human Thyroid Microtissue Model for Chemical Screening

Author:

Deisenroth Chad1ORCID,Soldatow Valerie Y2,Ford Jermaine3,Stewart Wendy1,Brinkman Cassandra1,LeCluyse Edward L2,MacMillan Denise K3,Thomas Russell S1ORCID

Affiliation:

1. National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

2. LifeNet Health, Virginia Beach, Virginia

3. Research Cores Unit, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina

Abstract

Abstract Thyroid hormones (TH) are essential for regulating a number of diverse physiological processes required for normal growth, development, and metabolism. The US EPA Endocrine Disruptor Screening Program (EDSP) has identified several molecular thyroid targets relevant to hormone synthesis dynamics that have been adapted to high-throughput screening (HTS) assays to rapidly evaluate the ToxCast/Tox21 chemical inventories for potential thyroid disrupting chemicals (TDCs). The uncertainty surrounding the specificity of active chemicals identified in these screens and the relevance to phenotypic effects on in vivo human TH synthesis are notable data gaps for hazard identification of TDCs. The objective of this study was to develop a medium-throughput organotypic screening assay comprised of reconstructed human thyroid microtissues to quantitatively evaluate the disruptive effects of chemicals on TH production and secretion. Primary human thyroid cells procured from qualified euthyroid donors were analyzed for retention of NK2 homeobox 1 (NKX2-1), Keratin 7 (KRT7), and Thyroglobulin (TG) protein expression by high-content image analysis to verify enrichment of follicular epithelial cells. A direct comparison of 2-dimensional (2D) and 3-dimensional (3D) 96-well culture formats was employed to characterize the morphology, differential gene expression, TG production, and TH synthesis over the course of 20 days. The results indicate that modeling human thyroid cells in the 3D format was sufficient to restore TH synthesis not observed in the 2D culture format. Inhibition of TH synthesis in an optimized 3D culture format was demonstrated with reference chemicals for key molecular targets within the thyroid gland. Implementation of the assay may prove useful for interpreting phenotypic effects of candidate TDCs identified by HTS efforts currently underway in the EDSP.

Funder

U.S. Environmental Protection Agency

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3