Affiliation:
1. Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
2. Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
Abstract
In brief
Traditionally viewed as enigmatic and elusive, adenomyosis is a fairly common gynecological disease but is under-recognized and under-researched. This review summarizes the latest development on the pathogenesis and pathophysiology of adenomyosis, which have important implications for imaging diagnosis of the disease and for the development of non-hormonal therapeutics.
Abstract
Traditionally considered as an enigmatic disease, adenomyosis is a uterine disease that affects many women of reproductive age and is a contributing factor for pelvic pain, heavy menstrual bleeding (HMB), and subfertility. In this review, the new development in the pathogenesis and pathophysiology of adenomyosis has been summarized, along with their clinical implications. After reviewing the progress in our understanding of the pathogenesis and describing the prevailing theories, in conjunction with their deficiencies, a new hypothesis, called endometrial–myometrial interface disruption (EMID), which is backed by extensive epidemiologic data and demonstrated by a mouse model, is reviewed, along with recent data implicating the role of Schwann cells in the EMI area in the genesis of adenomyosis. Additionally, the natural history of adenomyotic lesions is elaborated and underscores that, in essence, adenomyotic lesions are fundamentally wounds undergoing repeated tissue injury and repair (ReTIAR), which progress to fibrosis through epithelial–mesenchymal transition, fibroblast-to-myofibroblast transdifferentiation, and smooth muscle metaplasia. Increasing lesional fibrosis propagates into the neighboring EMI and endometrium. The increased endometrial fibrosis, with ensuing greater tissue stiffness, results in attenuated prostaglandin E2, hypoxia signaling and glycolysis, impairing endometrial repair and causing HMB. Compared with adenomyosis-associated HMB, the mechanisms underlying adenomyosis-associated pain are less understood but presumably involve increased uterine contractility, hyperinnervation, increased lesional production of pain mediators, and central sensitization. Viewed through the prism of ReTIAR, a new imaging technique can be used to diagnose adenomyosis more accurately and informatively and possibly help to choose the best treatment modality.
Subject
Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine
Reference261 articles.
1. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin;Adameyko,2009
2. Co-existence and origin of peptidergic and adrenergic nerves in the guinea pig uterus. Retrograde tracing and immunocytochemistry, effects of chemical sympathectomy, capsaicin treatment and pregnancy;Alm,1988
3. Perisynaptic Schwann cells – the multitasking cells at the developing neuromuscular junctions;Alvarez-Suarez,2020
4. Different macrophages equally induce EMT in endometria of adenomyosis and normal;An,2017a
5. Interaction of macrophages and endometrial cells induces epithelial-mesenchymal transition-like processes in adenomyosis;An,2017b