Different macrophages equally induce EMT in endometria of adenomyosis and normal

Author:

An Min,Li Dong,Yuan Ming,Li Qiuju,Zhang Lu,Wang Guoyun

Abstract

Endometrial cells and microenvironment are two important factors in the pathogenesis of adenomyosis. Our previous study demonstrated that macrophages can induce eutopic epithelial cells of adenomyosis to suffer from epithelial–mesenchymal transition (EMT). The aim of this study is to detect whether macrophages interacting with epithelial cells equally induce the EMT process in normal and eutopic endometria of healthy and adenomyotic patients; and whether macrophages parallelly polarize to M2. We investigated the expression levels of epithelial cadherin (E-cadherin), neural cadherin (N-cadherin), cytokeratin7 (CK7), vimentin, transforming growth factor-β1 (TGFB1), SMAD3 and pSMAD3 using immunohistochemistry and western blot, and then estimated the genetic levels of CD163, IL10 and MMP12 using real-time quantitative polymerase chain reaction (RT-PCR) in macrophages. Eutopic and normal endometrial tissues were obtained from 20 patients with adenomyosis and 11 control patients without adenomyosis, respectively. The immunohistochemical analysis shows distinct EMT in eutopic endometria in secretory phase; the expression levels of TGFB1, SMAD3 and pSMAD3 that indicate signal pathway of EMT were also higher in secretory phase. Macrophages can induce EMT process in primary endometrial epithelial cells derived from normal and eutopic endometria. After co-culturing, THP-1-derived macrophages polarized to M2. Compared with the eutopic endometrium group, further polarization to M2 was observed in the normal endometrium group. These results indicate that adenomyosis may be promoted by the pathologic EMT of epithelial cells, which is induced by macrophages that incapably polarize to M2.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3