OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: The protection of mammalian spermatozoa against oxidative stress

Author:

O’Flaherty Cristian1234ORCID,Scarlata Eleonora14

Affiliation:

1. Urology Division, Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada

2. Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada

3. Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada

4. The Research Institute, McGill University Health Centre, Montreal, Quebec, Canada

Abstract

In brief This review focuses on the enzymatic antioxidant mechanisms to fight oxidative stress by spermatozoa, highlighting the differences among mammalian species. We discuss recent evidence about players that promote and fight oxidative stress and the need for novel strategies to diagnose and treat cases of male infertility associated with oxidative damage of the spermatozoon. Abstract The spermatozoon is very sensitive to high reactive oxygen species (ROS) levels due to its limited antioxidant system. A consortium of antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidases (GPXs), peroxiredoxins (PRDXs), thioredoxins, and glutathione-S-transferases, is necessary to produce healthy spermatozoa and to maintain sperm quality to ensure motility, capacitation, and DNA integrity. A delicate balance between ROS production and antioxidant enzymes is needed to ensure ROS-dependent sperm capacitation. GPX4 is an essential component of the mitochondrial sheath in mammalian spermatozoa, and GPX5 is a crucial antioxidant defence in the mouse epididymis to protect the sperm genome during the maturation of the spermatozoon. The mitochondrial superoxide (O2·–) production is controlled by SOD2, and the hydrogen peroxide (H2O2) generated by SOD2 activity and peroxynitrite (ONOO) are scavenged mainly by PRDXs in human spermatozoa. PRDXs regulate the redox signalling necessary for sperm motility and capacitation, particularly by PRDX6. This enzyme is the first line of defence against oxidative stress to prevent lipid peroxidation and DNA oxidation by scavenging H2O2 and ONOO through its peroxidase activity and repairing oxidized membranes by its calcium-independent phospholipase A2 activity. The success of antioxidant therapy in treating infertility resides in the proper diagnosis of the presence of oxidative stress and which type of ROS are produced. Thus, more research on the molecular mechanisms affected by oxidative stress, the development of novel diagnostic tools to identify infertile patients with oxidative stress, and randomized controlled trials are of paramount importance to generate personalized antioxidant therapy to restore male fertility.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3