The Role of Selected Elements in Oxidative Stress Protection: Key to Healthy Fertility and Reproduction

Author:

Wróblewski Marcin1ORCID,Wróblewska Weronika2,Sobiesiak Marta3ORCID

Affiliation:

1. Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland

2. Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland

3. Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland

Abstract

Oxidative stress and its relationship to fertility and reproduction is a topic of interest in medicine, especially in the context of the effects of trace elements and micronutrients. Oxidative stress occurs when there is an excess of free radicals in the body, which can lead to cell and tissue damage. Free radicals are reactive oxygen species (ROS) that can be formed as a result of normal metabolic processes, as well as under the influence of external factors such as environmental pollution, UV radiation, and diet. Oxidative stress has a significant impact on fertility. In men, it can lead to DNA damage in sperm, which can result in reduced semen quality, reduced sperm motility and increased numbers of defective sperm, and free radical damage to sperm cell membranes causing a reduction in the number of available sperm. In women, oxidative stress can affect the quality of female reproductive cells, which can lead to problems with their maturation and with embryo implantation in the uterus and can also affect ovarian function and disrupt hormonal regulation of the menstrual cycle. A proper balance of trace elements and micronutrients is key to protecting against oxidative stress and maintaining reproductive health. Supplementation with appropriate elements such as zinc, selenium, copper, manganese, chromium, and iron can help reduce oxidative stress and improve fertility. This work discusses the effects of selected elements on oxidative stress parameters specifically in terms of fertility and reproduction.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3