Optical coherence microscopy allows for quality assessment of immature mouse oocytes

Author:

Fluks Monika1ORCID,Tamborski Szymon2ORCID,Szkulmowski Maciej2ORCID,Ajduk Anna1ORCID

Affiliation:

1. Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland

2. Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Toruń, Poland

Abstract

In brief Optical coherence microscopy is a label-free and non-invasive imaging technique capable of 3D subcellular structure visualization. Here we show that this method allows for quality assessment of immature mouse oocytes based on their chromatin conformation and can be a valuable addition to the toolkit used in assisted reproduction procedures. Abstract The success of assisted reproductive technologies, and particularly in vitro maturation, is tightly linked to the quality of oocytes. Therefore, there is a need for robust, reliable, and easy-to-assess biomarkers of oocyte developmental competence. Microscopy techniques visualizing oocyte intracellular structure could provide such biomarkers. However, fluorescence imaging methods, applied frequently in biology and allowing for detailed structural and dynamic studies of single cells, require fluorescent tags to visualize cellular architecture and may cause short- and long-term photo-damage. On the other hand, traditional light microscopy, although relatively non-invasive, does not provide detailed structural information. Optical coherence microscopy (OCM) is a promising alternative, as it does not require sample pre-processing or labelling and can provide 3D images of intracellular structures. Here we applied OCM to assess the chromatin conformation of immature mouse oocytes, a feature that corresponds with their transcriptional status and developmental competence and cannot be examined by traditional light microscopy. We showed that OCM distinguished oocytes with so-called non-surrounded nucleoli (NSN) and surrounded nucleoli (SN) chromatin conformation with very high sensitivity and specificity and that OCM scanning did not decrease the quality of oocytes. Finally, we cross-referenced OCM data with the oocyte ability to undergo normal nuclear and cytoplasmic maturation and proven that indeed oocytes scored with OCM as NSN mature less effectively than oocytes scored as SN. Our results suggest that OCM may be a valuable addition to the imaging toolkit used in assisted reproduction procedures.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Reference79 articles.

1. Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence;Aguila,2020

2. Light microscopy of mammalian gametes and embryos: methods and applications;Ajduk,2019

3. Quality control of embryo development;Ajduk,2013

4. Effect of oocyte morphology on embryo development and implantation;Balaban,2006

5. Does zona pellucida thickness influence the fertilization rate?;Bertrand,1995

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3