Spindle shape and volume differ in high- and low-quality metaphase II oocytes

Author:

Fluks Monika1,Milewski Robert2,Tamborski Szymon3,Szkulmowski Maciej3,Ajduk Anna1ORCID

Affiliation:

1. Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland

2. Department of Biostatistics and Medical Informatics, Medical University of Bialystok, Białystok, Poland

3. Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland

Abstract

In brief Optical coherence microscopy non-invasively visualizes metaphase II spindles allowing for quantitative analysis of their volume and shape, which may prove useful in the assessment of the oocyte quality. Using a mouse model, we showed also that analysis of spindle length combined with morphokinetics improves the evaluation of the resulting embryos. Abstract The proper development of embryos strongly depends on the quality of oocytes, so the evaluation of oocytes may be a useful initial step in IVF procedures. Additionally, it enables embryologists to make more informed decisions regarding the treatments chosen for the patients and better manage patients’ expectations. Optical coherence microscopy (OCM) allows for non-invasive 3D visualization of intracellular structures, such as spindles or nuclei, which have been linked to the success of embryonic development. Here, we applied a mouse model to examine whether OCM imaging could be used in the quality assessment of metaphase II (MII) oocytes. We showed that quantitative parameters describing the shape and volume of the MII spindle were associated with the quality of the resulting embryos, including the likelihood of blastocyst formation and the embryos’ ability to differentiate the trophectoderm and primitive endoderm, but not the epiblast. We also created a multivariate linear regression model, combining OCM-based quantification of MII spindles with morphokinetic analysis of the embryos, that allowed for improved evaluation of the embryo quality. Finally, we proved that OCM does not interfere with the viability of the scanned cells, at least during the preimplantation development. Therefore, we believe that OCM-based quantitative assessment of MII spindles can improve the oocyte and embryo selection in IVF procedures.

Publisher

Bioscientifica

Reference64 articles.

1. Quality control of embryo development;Ajduk,2013

2. Oocyte polarity and its developmental significance;Ajduk,2013

3. Light microscopy of mammalian gametes and embryos: methods and applications;Ajduk,2019

4. Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes;Al-Zubaidi,2021

5. Meiotic spindle assembly and chromosome segregation in oocytes;Bennabi,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3