Consistency and synchronization of AMPK-glycogen in endometrial epithelial cells are critical to the embryo implantation

Author:

Nie Li1ORCID,Zhang Li-xue1,Wang Yi-cheng1,Long Yun1,Ma Yong-dan1,Liao Lin-chuan2,Dai Xin-hua2,Cui Zhi-hui1,Liu Huan1,Wang Zhao-qi1,Ma Zi-yang1,Yuan Dong-zhi1,Yue Li-min13

Affiliation:

1. 1Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China

2. 3West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China

3. 2Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu, China

Abstract

Uterine receptivity to the embryo is crucial for successful implantation. The establishment of uterine receptivity requires a large amount of energy, and abnormal energy regulation causes implantation failure. Glucose metabolism in the endometrium is tissue specific. Glucose is largely stored in the form of glycogen, which is the main energy source for the endometrium. AMP-activated protein kinase (AMPK), an important energy-sensing molecule, is a key player in the regulation of glucose metabolism and its regulation is also tissue specific. However, the mechanism of energy regulation in the endometrium for the establishment of uterine receptivity remains to be elucidated. In this study, we aimed to investigate the energy regulation mechanism of mouse uterine receptivity and its significance in embryo implantation. The results showed that the AMPK, p-AMPK, glycogen synthase 1, and glycogen phosphorylase M levels and the glycogen content in mouse endometrial epithelium varied in a periodic manner under regulation by the ovarian hormone. Specifically, progesterone significantly activated AMPK, promoted glycogenolysis, and upregulated glycogen phosphorylase M expression. AMPK regulated glycogen phosphorylase M expression and promoted glycogenolysis. AMPK was also found to be activated by changes in the energy or glycogen of the endometrial epithelial cells. The inhibition of AMPK activity or glycogenolysis altered the uterine receptivity markers during the window of implantation and ultimately interfered with implantation. In summary, consistency and synchronization of AMPK and glycogen metabolism constitute the core regulatory mechanism in mouse endometrial epithelial cells involved in the establishment of uterine receptivity.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3