Author:
Diané Abdoulaye,Nikolic Nikolina,Rudecki Alexander P,King Shannon M,Bowie Drew J,Gray Sarah L
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a widely distributed neuropeptide that acts as a neurotransmitter, neuromodulator, neurotropic factor, neuroprotectant, secretagogue,and neurohormone. Owing to its pleiotropic biological actions, knockout ofPacap(Adcyap1) has been shown to induce several abnormalities in mice such as impaired thermoregulation. However, the underlying physiological and molecular mechanisms remain unclear. A previous report has shown that cold-exposedPacapnull mice cannot supply appropriate levels of norepinephrine (NE) to brown adipocytes. Therefore, we hypothesized that exogenous NE would rescue the impaired thermogenic response ofPacapnull mice during cold exposure. We compared the adaptive thermogenic capacity ofPacap−/−toPacap+/+mice in response to NE when housed at room temperature (24 °C) and after a 3.5-week cold exposure (4 °C). Biochemical parameters, expression of thermogenic genes, and morphological properties of brown adipose tissue (BAT) and white adipose tissue (WAT) were also characterized. Results showed that there was a significant effect of temperature, but no effect of genotype, on the resting metabolic rate in conscious, unrestrained mice. However, the normal cold-induced increase in the basal metabolic rate and NE-induced increase in thermogenesis were severely blunted in cold-exposedPacap−/−mice. These changes were associated with altered substrate utilization, reduced β3-adrenergic receptor (β3-Ar(Adrb3)) and hormone-sensitive lipase (Hsl(Lipe)) gene expression, and increased fibroblast growth factor 2 (Fgf2) gene expression in BAT. Interestingly,Pacap−/−mice had depleted WAT depots, associated with upregulated uncoupling protein 1 expression in inguinal WATs. These results suggest that the impairment of adaptive thermogenesis inPacapnull mice cannot be rescued by exogenous NE perhaps in part due to decreased β3-Ar-mediated BAT activation.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献