Myoglobin in Brown Adipose Tissue: A Multifaceted Player in Thermogenesis

Author:

Aboouf Mostafa A.123ORCID,Gorr Thomas A.1ORCID,Hamdy Nadia M.3ORCID,Gassmann Max12ORCID,Thiersch Markus12ORCID

Affiliation:

1. Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland

2. Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland

3. Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt

Abstract

Brown adipose tissue (BAT) plays an important role in energy homeostasis by generating heat from chemical energy via uncoupled oxidative phosphorylation. Besides its high mitochondrial content and its exclusive expression of the uncoupling protein 1, another key feature of BAT is the high expression of myoglobin (MB), a heme-containing protein that typically binds oxygen, thereby facilitating the diffusion of the gas from cell membranes to mitochondria of muscle cells. In addition, MB also modulates nitric oxide (NO•) pools and can bind C16 and C18 fatty acids, which indicates a role in lipid metabolism. Recent studies in humans and mice implicated MB present in BAT in the regulation of lipid droplet morphology and fatty acid shuttling and composition, as well as mitochondrial oxidative metabolism. These functions suggest that MB plays an essential role in BAT energy metabolism and thermogenesis. In this review, we will discuss in detail the possible physiological roles played by MB in BAT thermogenesis along with the potential underlying molecular mechanisms and focus on the question of how BAT–MB expression is regulated and, in turn, how this globin regulates mitochondrial, lipid, and NO• metabolism. Finally, we present potential MB-mediated approaches to augment energy metabolism, which ultimately could help tackle different metabolic disorders.

Funder

Swiss National Science Foundation

Publisher

MDPI AG

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3