New insights into the structure and mechanism of iodothyronine deiodinases

Author:

Schweizer Ulrich,Steegborn Clemens

Abstract

Iodothyronine deiodinases are a family of enzymes that remove specific iodine atoms from one of the two aromatic rings in thyroid hormones (THs). They thereby fine-tune local TH concentrations and cellular TH signaling. Deiodinases catalyze a remarkable biochemical reaction, i.e., the reductive elimination of a halogenide from an aromatic ring. In metazoans, deiodinases depend on the rare amino acid selenocysteine. The recent solution of the first experimental structure of a deiodinase catalytic domain allowed for a reappraisal of the many mechanistic and mutagenesis data that had been accumulated over more than 30 years. Hence, the structure generates new impetus for research directed at understanding catalytic mechanism, substrate specificity, and regulation of deiodinases. This review will focus on structural and mechanistic aspects of iodothyronine deiodinases and briefly compare these enzymes with dehalogenases, which catalyze related reactions. A general mechanism for the selenium-dependent deiodinase reaction will be described, which integrates the mouse deiodinase 3 crystal structure and biochemical studies. We will summarize further, sometimes isoform-specific molecular features of deiodinase catalysis and regulation, and we will then discuss available compounds for modulating deiodinase activity for therapeutic purposes.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Reference85 articles.

1. Auf'mkolk M Koehrle J Hesch RD Cody V 1986a Inhibition of rat liver iodothyronine deiodinase. Interaction of aurones with the iodothyronine ligand-binding site. Journal of Biological Chemistry 261 11623–11630.

2. Crystal structure of phlorizin and the iodothyronine deiodinase inhibitory activity of phloretin analogues

3. Is Halogen Bonding the Basis for Iodothyronine Deiodinase Activity?

4. Evidence that Cysteine, not Selenocysteine, is in the Catalytic Site of Type II Iodothyronine Deiodinase

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3