In vitro DNA-binding profile of transcription factors: methods and new insights

Author:

Wang Jinke,Lu Jie,Gu Guangming,Liu Yingxun

Abstract

The DNA-binding specificity of transcription factors (TFs) has broad impacts on cell physiology, cell development and in evolution. However, the DNA-binding specificity of most known TFs still remains unknown. The specificity of a TF protein is determined by its relative affinity to all possible binding sites. In recent years, the development of several in vitro techniques permits high-throughput determination of relative binding affinity of a TF to all possible k bp-long DNA sequences, thus greatly promoting the characterization of DNA-binding specificity of many known TFs. All DNA sequences that can be bound by a TF with various binding affinities form their DNA-binding profile (DBP). The DBP is important to generate an accurate DNA-binding model, identify all DNA-binding sites and target genes of TFs in the whole genome, and build transcription regulatory network. This study reviewed these techniques, especially two master techniques: double-stranded DNA microarray and systematic evolution of ligands by exponential enrichment in combination with parallel DNA sequencing techniques (SELEX-seq).

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3