Expression pattern determines regulatory logic

Author:

Mora-Martinez CarlosORCID

Abstract

Large amounts of effort have been invested in trying to understand how a single genome is able to specify the identity of hundreds of cell types. Inspired by some aspects of Caenorhabditis elegans biology, we implemented an in silico evolutionary strategy to produce gene regulatory networks (GRNs) that drive cell-specific gene expression patterns, mimicking the process of terminal cell differentiation. Dynamics of the gene regulatory networks are governed by a thermodynamic model of gene expression, which uses DNA sequences and transcription factor degenerate position weight matrixes as input. In a version of the model, we included chromatin accessibility. Experimentally, it has been determined that cell-specific and broadly expressed genes are regulated differently. In our in silico evolved GRNs, broadly expressed genes are regulated very redundantly and the architecture of their cis-regulatory modules is different, in accordance to what has been found in C. elegans and also in other systems. Finally, we found differences in topological positions in GRNs between these two classes of genes, which help to explain why broadly expressed genes are so resilient to mutations. Overall, our results offer an explanatory hypothesis on why broadly expressed genes are regulated so redundantly compared to cell-specific genes, which can be extrapolated to phenomena such as ChIP-seq HOT regions.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference64 articles.

1. The regulatory genome: gene regulatory networks in development and evolution;EH Davidson;Developmental Biology,2006

2. Transcriptional selectors, masters, and combinatorial codes: Regulatory principles of neural subtype specification;DW Allan;Wiley Interdiscip Rev Dev Biol,2015

3. Regulatory logic of neuronal diversity: terminal selector genes and selector motifs;O. Hobert;Proc Natl Acad Sci U S A,2008

4. A map of terminal regulators of neuronal identity in Caenorhabditis elegans;O. Hobert;Wiley Interdiscip Rev Dev Biol,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3