Endocrine and metabolic responses to extreme altitude and physical exercise in climbers

Author:

Benso Andrea,Broglio Fabio,Aimaretti Gianluca,Lucatello Barbara,Lanfranco Fabio,Ghigo Ezio,Grottoli Silvia

Abstract

ContextChronic hypoxia induces complex metabolic and endocrine adaptations. High-altitude (HA) exposure is a physiological model of hypoxia.ObjectiveTo further investigate the endocrine and metabolic responses to extreme HA.MethodsWe studied nine male elite climbers at sea level and at 5200 m after climbing Mt. Everest.ResultsAfter 7 weeks at HA, body weight was reduced (P<0.05); regarding endocrine variables we observed: a) an increase of 2-h mean GH concentration (P<0.05) as well as of total IGF-I and IGF binding protein-3 levels (P<0.05 for both); b) a prolactin increase (P<0.05) coupled with testosterone decrease (P<0.01) and progesterone increase (P<0.05) without any change in estradiol levels: c) no change in cortisol, ACTH, and dehydroepiandrosterone sulfate (DHEAS) levels; d) an increase in free thyroxine (P<0.05) and free tri-iodothyronine (T3) decrease (P<0.05) but no change in TSH levels; e) a plasma glucose decrease (P<0.05) without any change in insulin levels; f) an increase in mean free fatty acid levels (P<0.05); g) despite body weight loss, leptin levels showed non-significant trend toward decrease, while ghrelin levels did not change at all.ConclusionsThe results of the present study in a unique experimental human model of maximal exposure to altitude and physical exercise demonstrate that extreme HA and strenuous physical exercise are coupled with specific endocrine adaptations. These include increased activity of the GH/IGF-I axis and a low T3 syndrome but no change in ghrelin and leptin that was expected taking into account body weight decrease. These findings would contribute to better understanding human endocrine and metabolic physiology in hypoxic conditions.

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3