AMPK-derived peptides reduce blood glucose levels but lead to fat retention in the liver of obese mice

Author:

Chapnik Nava,Genzer Yoni,Ben-Shimon Avraham,Niv Masha Y,Froy Oren

Abstract

AMP-activated protein kinase (AMPK) is a regulator of energy balance at both the cellular and the whole-body levels. Direct activation of AMPK has been highlighted as a potential novel, and possibly safer, alternative to treat type II diabetes and obesity. In this study, we aimed to design and characterize novel peptides that mimic the αG region of the α2 AMPK catalytic domain to modulate its activity by inhibiting interactions between AMPK domains or other interacting proteins. The derived peptides were tested in vivo and in tissue culture. The computationally predicted structure of the free peptide with the addition of the myristoyl (Myr) or acetyl (Ac) moiety closely resembled the protein structure that it was designed to mimic. Myr-peptide and Ac-peptide activated AMPK in muscle cells and led to reduced adipose tissue weight, body weight, blood glucose levels, insulin levels, and insulin resistance index, as expected from AMPK activation. In addition, triglyceride, cholesterol, leptin, and adiponectin levels were also lower, suggesting increased adipose tissue breakdown, a result of AMPK activation. On the other hand, liver weight and liver lipid content increased due to fat retention. We could not find an elevated pAMPK:AMPK ratio in the liver in vivo or in hepatocytes ex vivo, suggesting that the peptide does not lead to AMPK activation in hepatocytes. The finding that an AMPK-derived peptide leads to the activation of AMPK in muscle cells and in adipose tissue and leads to reduced glucose levels in obese mice, but to fat accumulation in the liver, demonstrates the differential effect of AMPK modulation in various tissues.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3