Biological age of the endometrium using DNA methylation

Author:

Olesen Mia S1,Starnawska Anna23,Bybjerg-Grauholm Jonas4,Bielfeld Alexandra P5,Agerholm Inge1,Forman Axel6,Overgaard Michael T7,Nyegaard Mette2

Affiliation:

1. 1The Fertility Clinic, Horsens Regional Hospital, Horsens, Denmark

2. 2Department of Biomedicine, Aarhus University, Aarhus C, Denmark

3. 3iPSYCH: The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark

4. 4Statens Serum Institute, Copenhagen, Denmark

5. 5Department of Gynaecology, Obstetrics and REI (UniKiD), Medical Faculty, University Duesseldorf, Duesseldorf, Germany

6. 6Department of Gynaecology and Obstetrics, Aarhus University Hospital, Skejby, Denmark

7. 7Department of Chemistry and Bioscience, Aalborg University, Aalborg E, Denmark

Abstract

Age has a detrimental effect on reproduction and as an increasing number of women postpone motherhood, it is imperative to assess biological age in terms of fertility prognosis and optimizing fertility treatment individually. Horvath’s epigenetic clock is a mathematical algorithm that calculates the biological age of human cells, tissues or organs based on DNA methylation levels. The clock, however, was previously shown to be highly inaccurate for the human endometrium, most likely because of the hormonal responsive nature of this tissue. The aim of this study was to determine if epigenetically based biological age of the human endometrium correlated with chronological age, when strictly timed to the same time point in the menstrual cycle. Endometrial biopsies from nine women were obtained in two consecutive cycles, both strictly timed to the LH surge (LH + 7) and additionally, peripheral whole blood samples were analyzed. Using the Illumina HumanMethylation 450 K array and Horvath’s epigenetic clock, we found a significant correlation between the biological age of the endometrium and the chronological age of the participants, although the endometrial biological age was accelerated by comparison with blood and chronological age. Moreover, similar biological ages were found in pairs of consecutive biopsies, indicating that an endometrial biopsy does not alter the biological age in the following cycle. In conclusion, as long as endometrial samples are timed to the same time point in the menstrual cycle, Horvath’s epigenetic clock could be a powerful new biomarker of reproductive aging in the human endometrium.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3