A bovine oviduct epithelial cell suspension culture system suitable for studying embryo–maternal interactions: morphological and functional characterization

Author:

Rottmayer Regine,Ulbrich Susanne E,Kölle Sabine,Prelle Katja,Neumueller Christine,Sinowatz Fred,Meyer Heinrich H D,Wolf Eckhard,Hiendleder Stefan

Abstract

We established a short-term (24 h) culture system for bovine oviduct epithelial cells (BOECs), obtained on day 3.5 of the estrous cycle and evaluated the cells with respect to morphological criteria, marker gene expression, and hormone responsiveness. BOEC sheets were isolated mechanically from the ampulla with similar yields from oviducts ipsi- and contralateral to the ovulation site (57.9 ± 4.6 and 56.4 ± 8.0 × 106cells). BOECs showed > 95% purity and cells cultured for 24 h maintained morphological characteristics presentin vivo, as determined by light microscopy, scanning electron microscopy, and transmission electron microscopy. Both secretory cells with numerous secretory granules and ciliated cells with long, well-developed, and vigorously beating kinocilia were visible. Quantitative real-time PCR failed to detect significant differences in transcript levels between ipsi-and contralateral BOECs for the majority of marker genes (estrogen receptors α and β (ESR1andESR2), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), oviductal glycoprotein 1 (OVGP1), progesterone receptor (PGR), and tumor rejection antigen 1 (TRA1)) throughout the 24 h culture period. However, the combined data of all time points for glutathione peroxidase 4 (GPX4), a gene previously shown to be expressed at higher levels in the ipsilateral oviductin vivo, also indicated significantly different mRNA levelsin vitro. The expression of marker genes remained stable after 6 h cell culture, indicating only a short adaptation period. Western blot analysis confirmed ESR1 and PGR protein expression throughout the culture period. In agreement with cyclic differencesin vivo, estradiol-17β stimulation increasedPGRtranscript abundance in BOECs. Our novel culture system provides functional BOECs in sufficient quantities for holistic transcriptome and proteome studies, e.g. for deciphering early embryo–maternal communication.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3