Full‐information estimation of heterogeneous agent models using macro and micro data

Author:

Liu Laura1,Plagborg-Møller Mikkel2

Affiliation:

1. Department of Economics, Indiana University

2. Department of Economics, Princeton University

Abstract

We develop a generally applicable full‐information inference method for heterogeneous agent models, combining aggregate time series data and repeated cross‐sections of micro data. To handle unobserved aggregate state variables that affect cross‐sectional distributions, we compute a numerically unbiased estimate of the model‐implied likelihood function. Employing the likelihood estimate in a Markov Chain Monte Carlo algorithm, we obtain fully efficient and valid Bayesian inference. Evaluation of the micro part of the likelihood lends itself naturally to parallel computing. Numerical illustrations in models with heterogeneous households or firms demonstrate that the proposed full‐information method substantially sharpens inference relative to using only macro data, and for some parameters micro data is essential for identification.

Funder

National Science Foundation

Publisher

The Econometric Society

Subject

Economics and Econometrics

Reference37 articles.

1. Acharya, Sushant, William Chen, Marco Del Negro, Keshav Dogra, Ethan Matlin, and Reca Sarfati (2021), “Estimating HANK: Macro time series and micro moments.” Paper presented at the 2021 North American Winter Meeting of the Econometric Society.

2. Adjemian, Stéphane, Houtan Bastani, Michel Juillard, Fréderic Karamé, Junior Maih, Ferhat Mihoubi, George Perendia, Johannes Pfeifer, Marco Ratto, and Sébastien Villemot (2011), “Dynare: Reference manual version 4.” Dynare Working Papers 1, CEPREMAP.

3. Particle Markov chain Monte Carlo methods

4. Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heterogeneity and Aggregate Fluctuations;Journal of Political Economy;2024-05-15

2. Shocks, Frictions, and Inequality in US Business Cycles;American Economic Review;2024-05-01

3. Identifying preferences when households are financially constrained;Review of Economic Dynamics;2023-12

4. Full‐information estimation of heterogeneous agent models using macro and micro data;Quantitative Economics;2023

5. Estimation of Heterogeneous Agent Models: A Likelihood Approach;Oxford Bulletin of Economics and Statistics;2022-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3