Affiliation:
1. Department of Economics, UC Santa Cruz
Abstract
Since network data commonly consists of observations from a single large network, researchers often partition the network into clusters in order to apply cluster‐robust inference methods. Existing such methods require clusters to be asymptotically independent. Under mild conditions, we prove that, for this requirement to hold for network‐dependent data, it is necessary and sufficient that clusters have low conductance, the ratio of edge boundary size to volume. This yields a simple measure of cluster quality. We find in simulations that when clusters have low conductance, cluster‐robust methods control size better than HAC estimators. However, for important classes of networks lacking low‐conductance clusters, the former can exhibit substantial size distortion. To determine the number of low‐conductance clusters and construct them, we draw on results in spectral graph theory that connect conductance to the spectrum of the graph Laplacian. Based on these results, we propose to use the spectrum to determine the number of low‐conductance clusters and spectral clustering to construct them.
Subject
Economics and Econometrics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献