Author:
Ehigie Adeola. Folashade,Adeleke Gbadebo Emmanuel,Ojeniyi Fiyinfoluwa. D.,Ehigie Leonard Ona
Abstract
Chromolaena odorata is an invasive plant which is acclaimed to have cyanide remediation potential from contaminated sites. This examination means to decide the impact of ethanol concentrates of C. odorata (ECO), sodium thiosulphate and a mix of both on hematological parameters and blood lipid profile of rodents presented to potassium cyanide. (KCN). A sum of thirty five male Wistar rats partitioned into seven groups of five units were used. KCN Group rats were administered with KCN alone. Rats in 100ECO, 150ECO, 200ECO groups were administered with 100, 150 and 200 mg/kg body weight of ECO respectively. Rats under Na2sS2O3 and Na2S2O3+ECO groups were administered 200 mg/kg sodium thiosulphate and sodium thiosulphate with ECO at 200 mg/kg respectively. The trial was done in about a month. Toward the finish of the investigation, the packed cell volume (PCV), hemoglobin level (Hb), Red blood cells (RBC) and white blood cells (WBC) were resolved utilizing known biochemical methodology. The outcomes demonstrated a noteworthy increment (p ? 0.05) in PCV, Hb, RBC and WBC level of remedial groups when contrasted with the cyanide group. Total cholesterol (TC), and triglyceride (TG) were altogether lower while HDL-cholesterol was fundamentally expanded in all the treated groups when contrasted and the untreated group given cyanide alone. However, no significant difference in LDL-cholesterol was indicated in all therapeutic groups compared with the cyanide group. The study revealed that C. odorata at the tested doses was able to improve the hematological parameters and lipid profile in cyanide exposed rats.
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Reference24 articles.
1. Hidayati Nuril, Titi Juhaeti, Fauzia Syarif (2009).Mercury and Cyanide Contaminations in Gold mine environment and possible solution of cleaning up by using phytoextraction, HAYATI Journal of Biosciences, 16 ( 3): 88–94, 2009.
2. Julius Cuong Pham, David T Huang, Francis T McGeorge, and Emanuel P Rivers, “Clarification of cyanide’s effect on oxygen transport characteristics in a canine model,” 2007.
3. “Bhattacharya, R. and Tulsawani, R. (2009). Protective role of ?-ketoglutarate against massive doses of cyanide in rats. Environ. Biol. 30(4): 515-520.”
4. Kadiri, H.E, “The Effects of Aqueous Vernonia Amygdalina (Bitter Leaf) Extract On The Lipid Profile And Some Hematological Parameters In Rats Exposed To Cyanide,” 2017.
5. “Baskin, S.I., Porter, D.W., Rockwood, G.A., Romano, J.A., Patel, H.C., Kiser, R.C., Cook, C.M. and Ternay, A.L. (1999). In vitro and in vivo comparison of sulfur donors as antidotes to acute cyanide intoxication. J. Appl. Toxicol. 19: 173–183.”
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献