Post-disruption reconnection event driven by a runaway current

Author:

Singh L.12ORCID,Borgogno D.1ORCID,Subba F.2ORCID,Grasso D.1ORCID

Affiliation:

1. Istituto dei Sistemi Complessi-CNR and Dipartimento di Energia, Politecnico di Torino 1 , Torino 10129, Italy

2. NEMO Group, Dipartimento Energia, Politecnico di Torino 2 , Torino 10129, Italy

Abstract

The role of a runaway current in a post-disruption plasma is investigated through numerical simulations in an asymmetric magnetic reconnection event. We first reproduce the known linear results on the growth rate, the rotation frequency, and the formation of a microlayer smaller than the resistive one as found in Liu et al. [Physics of Plasmas 27, 092507 (2020)] and then focus on the nonlinear regime where are our main findings. We find that while the resistive layer controls the transition of the island from the linear to the nonlinear stage, the microlayer width controls the transition of the runaway current from the linear to the nonlinear phase. This latter transition is accompanied by a redistribution of runaways according to a spiral-like structure within the island. The same structure is also found in the thermal electron distribution when the electron inertia effects into the Ohm's law are taken into account. Finally, nonlinear simulations show that the island rotation frequency tends toward zero when the saturation is reached.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3