Magnetohydrodynamic simulations of runaway electron beam termination in JET

Author:

Bandaru VORCID,Hoelzl MORCID,Reux C,Ficker OORCID,Silburn S,Lehnen M,Eidietis NORCID,Team JOREK

Abstract

Abstract A runaway electron (RE) fluid model is used to perform non-linear magnetohydrodynamic simulations of a relativistic electron beam termination event in JET. The case considered is that of a post-disruption low density cold plasma in the runaway plateau phase, wherein high-Z impurities have been largely flushed out via deuterium second injection (Shot:95135). Details of the experiment are found in separate publications. Our studies reveal that a combination of low plasma density and a hollow current profile which is confirmed by experimental studies causes fast growth of a double-tearing mode, which in turn leads to stochastization of the magnetic field and a prompt loss of REs. The phenomenology of events leading to the crash and the timescales of the dynamics are in excellent agreement with the experiment. Simulations also indicate significant toroidal variation in RE deposition but without localized hotspots. The strong stochastization setting in first from the edge leads to a poloidally broad deposition footprint that partly explains the benign nature of the termination event. This work further supports the potential possibility to engineer a benign RE beam termination scenario via deuterium second injection in ITER, as proposed by Reux et al ‘Runaway electron beam suppression using impurity flushing and large magnetohydrodynamic instabilities’ (submitted to Physical Review Letters).

Funder

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3