Characteristic investigation of digital control four quadrant electro-hydrostatic actuator with separated hydraulic motor

Author:

Chen Xiaoming12ORCID,Zhu Yuchuan1ORCID,Ling Jie1ORCID,Zhang Mingming1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics 1 , Nanjing 210016, China

2. The First Aircraft Institute, AVIC 2 , Xi’an 710089, China

Abstract

The asymmetric electro-hydrostatic actuator (EHA) is a promising distributed hydraulic actuation solution for the more-electric aircraft (MEA). However, the flow asymmetry is a common problem causing the poor position control accuracy and dynamics of EHA. To achieve good flow control in all quadrants and save energy in the assistive quadrants, a digital control four quadrant electro-hydrostatic actuator with a separated hydraulic motor using a novel four-quadrant division principle was proposed in this article. The theoretical model of the proposed EHA has been developed in MATLAB/Simulink and validated in the experiments. The theoretical results indicated that the increased external force allows the proposed EHA to have a constantly and partly linearly and varied motion velocity of the cylinder piston in the resistive and assistive quadrants, and the latter is determined by the specific external forces of 0.5 and 2.8 kN, respectively, in the extension and retraction quadrants. Compared with EHA without SHM, in the second and fourth quadrants, the energy dissipation is reduced by 104% and 36.7%, respectively, while the motion velocity of the cylinder piston is reduced by 12.9% and 25.6%, respectively. The theoretical and experimental results indicated that the proposed four quadrants division method effectively corrects the misjudgment of quadrants by using the existing four quadrants division method under the lower external force.

Funder

National Natural Science Foundation of China

Primary Research and Development Plan of Jiangsu Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3