Effect of cube spacings on the three-dimensional flow structure over an array of wall-mounted cube

Author:

Khan Basheer A.1ORCID,Saha Arun K.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kanpur , Kanpur 208016, India

Abstract

The turbulent flow over an array of cubes mounted on one of the walls of a channel has been investigated using direct numerical simulation for cube spacing that ranges between 2.0 and 4.0. The Reynolds number based on the cube size and the average streamwise velocity is chosen to be 4000. The Navier–Stokes equations have been discretized using second-order spatial and temporal discretization schemes. The present investigation focuses on the flow structures and comprehensive characterization of the separated zones surrounding the cubes, as well as the associated wall-shear stress. A vortex shedding has been observed for the cube spacings of 3.0 and 4.0 without any evidence of vortex shedding for the lowest pitch of 2.0. For the two cases having pitches of 3.0 and 4.0, the presence of the unsteady separation bubbles at the cube's top and side surfaces results in a decrease in wall-shear stress. The quadrant analysis for the region close to the top surface of the cube is performed with the help of the joint probability density function, which reveals dual peaks within the recirculation bubble at the top surface of the cube for higher cube spacings. By conducting an invariant analysis of the Reynolds stress tensor for different cube spacings, we have explored the characteristic of Reynolds stress anisotropy due to the total fluctuations. The production of negative turbulent kinetic energy (TKE) is observed in different regions within the flow domain, among which the horseshoe vortex region for each cube spacing reveals its dominant presence. The physical mechanism responsible for the production of the negative TKE has also been attempted by decomposing the production term into two parts, namely, normal and shear components.

Funder

Visvesvaraya PhD Scheme, Ministry of Communication and Information Technology

Impacting Research Innovation and Technology

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooling improvement by internal effusion jets for impingement pin-fin channel;International Journal of Thermal Sciences;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3