Abstract
This paper reports on the measurement of aerodynamic forces that act on a square cylinder which was downstream to an identical cylinder. When the two cylinders were in tandem formation, a critical spacing equal to about four times the side length D of the square cylinder, was found to exist. For L/D < (L/D)cri, where L is the streamwise centre to centre spacing between the two cylinders, the boundary layers which separate from the upstream cylinder reattach onto the downstream cylinder. Only the latter sheds vortices and it is subjected to a thrust rather than a drag force. For LID > (L/D)cri, both cylinders shed vortices and both are subjected to drag forces. When the two cylinders were in staggered formation, due to the presence of various lift generating mechanisms, the lift force that acts on the downstream cylinder can be either positive which points away from the wake centre line of the upstream cylinder or negative which points towards the wake centre line of the upstream cylinder. It was found that in the range 4 ⩽ LID ⩽ 12, an unstable regime exists in that the lift force generated pushes the downstream cylinder away from the upstream cylinder’s wake centre line at small dimensionless transverse spacing (Y/D) where Y is the transverse centre to centre spacing between the two cylinders and reverses its direction only at Y/D > 2. At L/D = 29, the largest streamwise spacing that can be investigated in the present study, the influence that the upstream cylinder has on the aerodynamic forces acting on the downstream cylinder was found to be still fairly appreciable.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献