500-period epitaxial Ge/Si0.18Ge0.82 multi-quantum wells on silicon

Author:

Assali S.1ORCID,Koelling S.1,Abboud Z.1,Nicolas J.1ORCID,Attiaoui A.1,Moutanabbir O.1ORCID

Affiliation:

1. Department of Engineering Physics, École Polytechnique de Montréal, C. P. 6079, Succ. Centre-Ville, Montréal, Québec H3C 3A7, Canada

Abstract

Ge/SiGe multi-quantum well heterostructures are highly sought-after for silicon-integrated optoelectronic devices operating in the broad range of the electromagnetic spectrum covering infrared to terahertz wavelengths. However, the epitaxial growth of these heterostructures at a thickness of a few micrometers has been a challenging task due to the lattice mismatch and its associated instabilities resulting from the formation of growth defects. To elucidate these limits, we outline herein a process for the strain-balanced growth on silicon of 11.1/21.5 nm Ge/Si0.18Ge0.82 superlattices (SLs) with a total thickness of 16  μm corresponding to 500 periods. Composition, thickness, and interface width are preserved across the entire SL heterostructure, which is an indication of limited Si–Ge intermixing. High crystallinity and low defect density are obtained in the Ge/Si0.18Ge0.82 layers; however, the dislocation pileup at the interface with the growth substrate induces micrometer-long cracks on the surface. This eventually leads to significant layer tilt in the strain-balanced SL and in the formation of millimeter-long, free-standing flakes. These results confirm the local uniformity of structural properties and highlight the critical importance of threading dislocations in shaping the wafer-level stability of thick multi-quantum well heterostructures required to implement effective silicon-compatible Ge/SiGe photonic devices.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Canada Foundation for Innovation

Mitacs

PRIMA Quebec

Defence Canada

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3