Defect level in κ-Ga2O3 revealed by thermal admittance spectroscopy

Author:

Langørgen Amanda1ORCID,Kalmann Frodason Ymir1ORCID,Karsthof Robert1ORCID,von Wenckstern Holger12ORCID,Thue Jensen Ingvild Julie13ORCID,Vines Lasse1ORCID,Grundmann Marius2ORCID

Affiliation:

1. Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo 1 , P.O. Box 1048, Blindern, Oslo N-0316, Norway

2. Universität Leipzig, Fakultät für Physik und Geowissenschaften, Felix-Bloch-Institut 2 , D-04103 Leipzig, Germany

3. SINTEF 3 , Forskningsveien 1, 0373 Oslo, Norway

Abstract

Defects in pulsed-laser deposition grown have been investigated using thermal admittance spectroscopy and secondary ion mass spectrometry (SIMS). A film was grown on either a tin-doped indium oxide or an aluminum-doped zinc oxide buffer layer on a sapphire substrate functioning as back contact layer in vertical diode structures. In both sample types, a distinct signature in the capacitance signal was observed in the temperature range of 150–260 K. The corresponding defect charge-state transition level, labeled , was found to exhibit an activation energy of 0.21 eV. Potential candidates for the level were investigated using a combination of SIMS and hybrid-functional calculations. SIMS revealed the main impurities in the sample to be tin, silicon, and iron. The hybrid-functional calculations predict the acceptor levels of substitutional iron to lie 0.7–1.2 eV below the conduction band minimum depending on Ga-site, making an unlikely candidate for the level. Furthermore, Si as well as Sn substituting on the sixfold coordinated Ga2 site and the fivefold coordinated Ga3 and Ga4 sites are all shallow donors in -, similar to that of -. Sn substituting on the fourfold Ga1 site is, however, predicted to have levels in the bandgap at 0.15 and 0.24 eV below the conduction band minimum, in accordance with the extracted activation energy for . Thus, we tentatively assign as the origin of the level.

Funder

The Research Council of Norway

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3