Prospects of silicide contacts for silicon quantum electronic devices

Author:

Tsoukalas K.1ORCID,Schupp F.1ORCID,Sommer L.1ORCID,Bouquet I.2ORCID,Mergenthaler M.1ORCID,Paredes S.1,Vico Triviño N.1ORCID,Luisier M.2ORCID,Salis G.1ORCID,Harvey-Collard P.1ORCID,Zumbühl D.3ORCID,Fuhrer A.1ORCID

Affiliation:

1. IBM Research Europe – Zürich 1 , Säumerstrasse 4, 8803 Rüschlikon, Switzerland

2. Integrated Systems Laboratory, ETH Zürich 2 , 8092 Zürich, Switzerland

3. Department of Physics, University of Basel 3 , Klingelbergstrasse 82, 4056 Basel, Switzerland

Abstract

Metal contacts in semiconductor quantum electronic devices can offer advantages over doped contacts, primarily due to their reduced fabrication complexity and lower temperature requirements during processing. Some metals can also facilitate ambipolar device operation or form superconducting contacts. Furthermore, a sharp metal–semiconductor interface allows for contact placement in close proximity to the active device area avoiding damage caused by dopant implantation. However, in the case of gate-defined quantum dots in intrinsic silicon, the formation of a Schottky barrier at the silicon–metal interface can lead to large, nonlinear contact resistances at cryogenic temperatures. We investigate this issue by examining hole transport through metal oxide-semiconductor transistors with platinum silicide contacts on intrinsic silicon substrates. We extract the contact and channel resistances as a function of temperature and improve the cryogenic conductance of the device by more than an order of magnitude by implementing meander-shaped contacts. In addition, we observe signatures of enhanced transport through localized defect states, which we attribute to platinum clusters in the depletion region of the Schottky contacts that form during the silicidation process. These results showcase the prospects of silicide contacts in the context of cryogenic quantum devices and address associated challenges.

Funder

Horizon 2020 Framework Programme

National Center of Competence in Research Spin Qubit in Silicon

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3