Affiliation:
1. College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s Republic of China
Abstract
Conical intersections (CIs) provide effective fast nonradiative decay pathways for electronic excitation, which can significantly influence molecular photoluminescence properties. However, in many cases, crossing a CI does not have direct observables, making studies of CIs experimentally challenging. Herein, the theoretically predicted double CIs by cis–trans twisting and cyclization in tetraphenyl ethylene, a well-known aggregation-induced emission molecule, are investigated with excitation dependent ultrafast UV/IR spectroscopy and fluorescence. Both the fluorescence quantum yield and the efficiency of cyclization are found to be smaller with a shorter excitation wavelength. An abrupt change occurs at about 300–310 nm. The results imply that crossing the twisting CI has a larger barrier than the cyclization CI, and the cis–trans twisting motion is probably involved with large solvation reorganization.
Funder
National Natural Science Foundation of China
Ministry of Science and Technology of the People’s Republic of China
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献