Turning Non‐Emissive Schiff Bases Into Aggregate Emitters

Author:

Chen Xinmeng1,Zhang Siwei1,Jiang Yefei2,He Guiying3,Zhang Minjie1,Wang Jin1,Deng Zihao1,Wang Haoran1,Lam Jacky W. Y.1,Hu Lianrui2,Zhong Tang Ben14ORCID

Affiliation:

1. Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China

2. Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Frontiers Science Center of Molecule Intelligent Syntheses School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China

3. Photonics Initiative Advanced Science Research Center City University of New York New York NY-10031 USA

4. School of Science and Engineering The Chinese University of Hong Kong Shenzhen (CUHK-Shenzhen) Guangdong 518172 China

Abstract

AbstractSchiff bases are a crucial component in various functional materials but often exhibit non‐emissive behavior which significantly limits their potential applications as luminescent materials. However, traditional approaches to convert them into aggregate emitters often require intricate molecular design, tedious synthesis, and significant time and resource consumption. Herein, we present a cocrystallization‐induced emission strategy that can transform non‐emissive (hetero)aryl‐substituted Schiff bases into green‐yellow to yellow aggregate emitters via even simple grinding of a mixture of Schiff bases and 1,2,4,5‐tetracyanobenzene (TCB) mixtures. The combined experimental and theoretical analysis revealed that the cocrystallization inhibits the C=N isomerization and promotes face‐to‐face π–π interaction, which restricts access to both the dark state and canonical intersection to ultimately induce emission. Furthermore, the induced emission enables the observation of solid‐state molecular diffusion through fluorescence signals, advancing white light emission diodes, and notably, solution‐processed organic light‐emitting diodes based on cocrystal for the first time. This study not only highlights the potential of developing new C=N structural motifs for AIEgens but also could boost advancements in related structure motifs like C=C and N=N.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3