Fluid mechanics of air recycling and filtration for indoor airborne transmission

Author:

Krishnaprasad K. A.1ORCID,Salinas J. S.1ORCID,Zgheib N.2ORCID,Balachandar S.1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Florida 1 , Gainesville, Florida 32611, USA

2. Department of Mechanical Engineering, The University of Texas Rio Grande Valley 2 , Edinburg, Texas 78573, USA

Abstract

We present a statistical framework to account for effects of recycling and filtration in ventilation systems for the estimation of airborne droplet nuclei concentration in indoor spaces. We demonstrate the framework in a canonical room with a four-way cassette air-conditioning system. The flow field within the room is computed using large eddy simulations for varying values of air changes per hour, and statistical overloading is used for droplet nuclei, which are tracked with a Langevin model accounting for sub-grid turbulence. A key element is to break up the path that a virus-laden droplet nucleus can take from the time it is ejected by the sick individual to the time it reaches the potential host into four separate elementary processes. This approach makes it possible to provide turbulence-informed and statistically relevant pathogen concentration at any location in the room from a source that can be located anywhere else in the room. Furthermore, the approach can handle any type of filtration and provides a correction function to be used in conjunction with the well-mixed model. The easy-to-implement correction function accounts for the separation distance between the sick and the susceptible individuals, an important feature that is inherently absent in the well-mixed model. The analysis shows that using proper filtration can increase the cumulative exposure time in typical classroom settings by up to four times and could allow visitations to nursing homes for up to 45 min.

Funder

National Science Foundation

LG Electronics

the University of Florida Informatics Institute

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3