A numerical study of the settling of non-spherical particles in quiescent water

Author:

Cheng XiaoyongORCID,Cao ZhixianORCID,Li JiORCID,Borthwick Alistair12ORCID

Affiliation:

1. Institute for Infrastructure and Environment, The University of Edinburgh 3 , Edinburgh EH9 3JL, United Kingdom

2. School of Engineering, Computing and Mathematics, University of Plymouth 4 , Plymouth PL4 8AA, United Kingdom

Abstract

Settling of non-spherical particles is poorly understood with previous studies having focused mainly on spherical particles. Here, a series of particle-resolved direct numerical simulations are conducted using FLOW-3D (commercial computational fluid dynamics software) for spheres and five regular, non-spherical shapes of sediment particles, i.e., prolate spheroid, oblate spheroid, cylinder, disk, and cube. The Galileo number varies from 0.248 to 360, and the particle Reynolds number Rep ranges from 0.002 77 to 562. The results show that a non-spherical particle may experience larger drag and, consequently, attain a lower terminal velocity than an equivalent sphere. If Rep is sufficiently small, the terminal velocity is less affected by particle shape as characterized by the particle aspect ratio. For relatively large Rep, the shape effect (represented by the Corey shape factor) becomes more significant. Empirical correlations are derived for the dimensionless characteristic time t95∗ and displacement s95∗ of particle settling, which show that t95∗ remains constant in the Stokes regime (Rep < 1) and decreases with increasing Rep in the intermediate regime (1 ≤ Rep < 103), whereas s95∗ increases progressively with increasing Rep over the simulated range. It is also found that in the Stokes regime, particle orientation remains essentially unchanged during settling, and so the terminal velocity is governed by the initial orientation. In the intermediate regime, a particle provisionally settling at an unstable orientation self-readjusts to a stable equilibrium state, such that the effect of initial orientation on the terminal velocity is negligible. Moreover, an unstable initial orientation can enhance the vertical displacement and may promote vortex shedding.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3