Liquid–solid two-phase flow and separation behavior in a novel cyclone separator

Author:

Chen HuORCID,Zhang JianORCID,Liu ShuoORCID,Xu JingyuORCID

Abstract

In response to the prevalent issue of sand presence in liquid, particularly prominent in petroleum engineering, a novel cyclone separator has been meticulously engineered for fine-particle separation. Experiments and numerical simulation methods have provided a profound understanding of the flow-field characteristics and separation efficacy of this device. The internal architecture of the swirling flow inside the separator features a distinctive central vortex core, complemented by a turbulent secondary vortex formation in the lower section of the underflow. As the axial height increases, the secondary vortex gradually dissipates. An analysis of pressure and velocity distribution within the cyclone separator confirms the establishment of a stable cyclone field in the built-in cyclone and a tendency for the flow field within the tank to exhibit uniformity with increasing height. These flow-field characteristics show that the cyclone separator has a good separation effect on fine-rust particle impurities. Furthermore, the separation efficiency of the novel cyclone separator demonstrates a positive correlation with increasing particle size. Of the parameters studied, variation of the inlet velocity is the best method for obtaining optimum separation efficiency for a cyclone desander with a fixed particle size. Specifically, when the inlet velocity reaches 3 m/s, the desander attains an impressive separation efficiency of up to 70%.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3