Reference-free self-calibrating tip-based scattering-type THz near-field microscopy

Author:

Moon Y.1,Lee H.1ORCID,Lim J.1ORCID,Lee G.2ORCID,Kim J.3ORCID,Han H.1ORCID

Affiliation:

1. Department of Electrical Engineering, Pohang University of Science and Technology 1 , Pohang 37673, Republic of Korea

2. Smart Food Manufacturing Project Group, Korea Food Research Institute 2 , Wanju 55365, Republic of Korea

3. Department of Biological and Agricultural Engineering and Institute for Nanoscience and Engineering, University of Arkansas 3 , Fayetteville, Arkansas 72701, USA

Abstract

In this work, we present a quantitative analysis model based on reference-free self-calibration to analyze scattered fields and approach curves on a dielectric substrate for terahertz scattering-type scanning near-field optical microscopy. The results of our model are compared with experimentally measured data and a fully numerical analysis based on a line dipole image method and a quasi-electrostatic approximation. The model is used to extract the effective radius of the tip and the relative permittivity of the silicon substrate to the near-field scattering signal. The measured approach curves on Au and silicon substrates show good agreement with the calculated approach curves, and the refractive index for silicon is precisely determined to be 3.42. For a tip-based THz scattering-type scanning near-field optical microscope, the proposed analysis model allows for the extraction of the effective probe radius and dielectric functions, thereby enabling conclusive measurements of geometric parameters and optical constants.

Funder

Samsung Science and Technology Foundation

Institute for Information and Communications Technology Promotion

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Terajet-assisted time-domain super-resolution imaging;Journal of Physics D: Applied Physics;2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3