Solution-based iron doping of solvothermally grown 2D hexagonal bismuth telluride

Author:

Marcus Gabriel E.1ORCID,Carlson Timothy W.1ORCID,Swathi Kadaba1ORCID,Carroll David1ORCID

Affiliation:

1. Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27105, USA

Abstract

In this work, we examine the formation of iron-based magnetic domains on two-dimensional (2D) single-crystal bismuth telluride plates. Using solvothermal chemical methods, 2D bismuth telluride (Bi2Te3) single crystalline nanoplates were reacted with iron salts (FeCl2) to achieve electrical doping. The use of a reducing agent [L(+)-ascorbic acid] along with FeCl2 resulted in homogeneous dispersion of iron across the crystal, whereas non-reduced iron doping achieved edge growth of iron/iron oxide nanoparticles. High-resolution analytical electron microscopy was used to examine the iron nanoparticle accumulation and morphology at nanoplate edges for non-reduced materials and iron dispersions within the crystals in the case of reduction. Our analysis revealed little variation in the atomic uptake of iron in any form over a range of solution-dopant concentrations. However, structural analysis and transport measurements clearly indicate the tendency of the dopant nanoparticles to oxidize quickly. The Seebeck coefficient and power factor also express modifications with exposure to oxidation, providing an indirect probe of the dopant modification to the host Bi2Te3’s electronic properties. Importantly, however, magnetic force microscopy images show a distinct difference in the formation of magnetic phases with and without the use of reducing agents during iron doping. This suggests that oxidation post-doping does not form magnetic phases, whereas oxidation during the doping process is suitable for obtaining magnetically doped Bi2Te3 nanocrystals.

Funder

United States Special Operations Command

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3