Abstract
Modeling and simulation of granular materials have received great attention in a wide range of scientific and engineering fields. With various discrete or continuum-based methods facing different aspects of the complexity of granular materials, their multi-scale coupling may lead to more effective and efficient methods. In this work, a novel spatial–temporal multiscale method is proposed with spatially overlapped continuum and discrete systems running alternately at different time steps to accelerate the simulation. The continuum system aims at predicting the potential position of each particle, and the discrete system is utilized to provide particle-level information and correct the prediction of the continuum system. The feasibility and accuracy of this method are demonstrated by comparing to typical traditional methods for silo discharge.
Funder
Transformational Technologies for Clean Energy and Demonstration, Strategic Priority Research Program of Chinese Academy of Sciences
National Natural Science Foundation of China
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献