Spatial–temporal multiscale discrete–continuum simulation of granular flow

Author:

Abstract

Modeling and simulation of granular materials have received great attention in a wide range of scientific and engineering fields. With various discrete or continuum-based methods facing different aspects of the complexity of granular materials, their multi-scale coupling may lead to more effective and efficient methods. In this work, a novel spatial–temporal multiscale method is proposed with spatially overlapped continuum and discrete systems running alternately at different time steps to accelerate the simulation. The continuum system aims at predicting the potential position of each particle, and the discrete system is utilized to provide particle-level information and correct the prediction of the continuum system. The feasibility and accuracy of this method are demonstrated by comparing to typical traditional methods for silo discharge.

Funder

Transformational Technologies for Clean Energy and Demonstration, Strategic Priority Research Program of Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3