Flow rate characterization for liquid-immersed granular medium discharging through a hopper

Author:

Fan JianhuaORCID,Zhu ChengzhiORCID,Wang HongweiORCID,Xu JintongORCID,Wang LuORCID

Abstract

The granular sample immersed in a viscous fluid discharge through an orifice connecting a pipe or no pipe has been numerically investigated. A two-dimensional fluid–particle model is adapted, which combines the discrete element method with the lattice Boltzmann method using the partial saturation boundary technique. The discharge rate of liquid-immersed granular media flowing from a hopper is parametrically analyzed by adding a pipe at the outlet, varying fluid properties and orifice sizes. The results show that the existence of the pipe significantly slows down the discharge rate compared with the no-pipe case. A revisited law based on the experimental investigations is proposed by incorporating particle maximum velocity, enabling the prediction of the discharge rate properly. To account for the fluid–particle interaction, the velocity distribution of the particle and its surrounding fluid is analyzed at the local scale. Then, an extension of the kinematic model linking the particle flow rate and velocity distribution is proposed, which allows the prediction of granular discharge from a hopper by considering the influence of the interstitial fluid.

Funder

Department of Science and Technology of Jilin Province

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3